Searches for Heavy Resonances at DØ Ioannis Katsanos University of Nebraska - Lincoln for the DØ Collaboration #### Outline - * Introduction - * Theory - * Tevatron DØ Detector - * Analyses - * Limits - * Summary and Conclusions ### Introduction What is a Z'? - * From a Theorist point of view - * A Z' is a "heavy" neutral gauge boson (spin 1) - * Examples can be a new U(1) gauge boson; Kaluza-Klein modes of γ , Z, ... - * From an Experimentalist's point of view: - * A Z' is a "heavy" object which appears as a "narrow" resonance - * Examples can be extra gauge bosons; Randall-Sundrum KK gravitons; KK modes of γ, Z, ...; Exotic Higgses (eg in SUSY);... - * Both points of view are valid, although it is important to define what we mean by "heavy" and "narrow" so we communicate better - * Z' ⇔ Heavy Resonances - * "Heavy" \Rightarrow Above the reach of LEP (~200 GeV) - * "Narrow" \Rightarrow Natural width less than the detector (calorimeter) resolution ### Theory Z' Boson - * Various extensions of the Standard Model often postulate an additional U(1) group to its gauge structure (SU(3)_C \otimes SU(2)_L \otimes U(1)_Y) - * Additional group may arise in models derived from grand unified theories (GUT) - * Gives rise to associated gauge bosons (commonly referred to as Z' bosons), which are electrical neutral, spin 1 particles - * Such Z' bosons typically couple to SM fermions through electroweak interaction - * Can be observed at hadron colliders as narrow resonances through the process $$q\bar{q} \rightarrow Z' \rightarrow e^+e^-$$ ### Theory Z' Boson - * Plethora of Z' models - * One way to distinguish these models is by the strength of their coupling constants - * If electroweak scale couplings, models are called "canonical" - * Sequential SM Z' boson - * Same couplings as SM Z boson - * Width $\Gamma_{Z'} = \Gamma_Z \times m_{Z'} / m_Z$ (for $M_{Z'} > 2m_t$ the decay channel to t-tbar opens) - * The E6 models: E6 \rightarrow SO(10)×U(1) $_{\psi}$ and SO(10) \rightarrow SU(5)×U(1) $_{\chi}$ - * Gives rise to additional $Z'(\theta) = Z'_{\chi}\cos\theta + Z'_{\psi}\sin\theta$, where $0 \le \theta \le \pi$ - * Z'_{χ} ($\theta = 0$) is a special case in another set of models (T_{3R} and B-L models) - * Stuckelberg model: Example of a model with non-standard couplings ("non-canonical") *PLB* 586 (2004) 366 - * Gives rise to a very narrow Z' (for $M_{Z'} = 300 \text{ GeV}$, $\Gamma \sim 20 \text{ MeV}$) - * Parameters of model, mass mixing ε and $M_{Z'}$ ### Theory Randall - Sundrum Model - * Randall Sundrum Model (RS) describes a 5 dimensional warped geometry - * SM fields: weak-brane; Gravity: gravity-brane - * Any mass parameter M on the weak-brane yields to a physical mass M_0 in the higher dimensional theory - * $M = M_0 \cdot e^{-kr\pi}$, where $e^{-kr\pi}$ is the warp factor, k is the curvature scale, and r (=r_c) is the compactification radius of the extra dimension - * kr_c = 11-12 yields SM observed electroweak/gravity scale ### Theory Randall - Sundrum Model - * Compactification of 5th dimension gives rise to KK gravitons (G*) - * The only particles that propagate in the 5th dimension - * Spin 2 - * Universal coupling to SM fields - * Parameters used - * Mass of lightest KK graviton M₁ - * Dimensionless coupling constant k/\bar{M}_{Pl} * $$0.01 \le \bar{k}/M_{Pl} \le 0.1$$ $$BR(\gamma\gamma)/BR(ee) = 2$$ # Instrumentation Accelerator and Detector #### Fermilab Tevatron Collider - * Proton-antiproton collider with 1.96 TeV center-of-mass energy - * Single magnet ring protons and antiprotons circulate in opposite directions - * Close to 12 fb⁻¹ delivered. More than 2 fb⁻¹ per year delivered #### DØ Detector - * General purpose detector - * Tracking system - * Calorimeter - * Muon system - * Coordinates system - * Cylindrical with z along the beam axis - * $\eta = -\ln[\tan(\theta/2)]$ - * p_T Momentum transverse to the beam axis ### Analysis Strategy - * Search for narrow resonances on the invariant mass spectra of ee and $\gamma\gamma$ decay channels - * To optimize sensitivity and maintain flexibility, split the data into dielectron and diphoton samples based on tracking information - * Derive contribution of each SM background by fitting to the data invariant mass spectrum in a control region around the Z peak - * Normalize the background shapes to their contributions in the control region and extrapolate into the signal region - * Search for excesses. In absence of a significant excess, proceed with setting limits # Data Selection EM Objects Identification - * Goal is to select EM objects and remove background - * Sources of background: - * π^0 showers that can overlap with nearby track - * Charged pions - * Jet Fluctuations - * EM particles are reconstructed using energy deposited at the four EM calorimeter layers and the first hadronic - * EM objects need to have $p_T > 25$ GeV and $|\eta| < 1.1$ - * Focus only in events where both objects are in Central Calorimeter. Adding objects in the End-Caps would improve by ~2% our sensitivity in the signal region, while having higher background contributions - * Select events with at least two EM objects - * Choose the two highest p_T EM objects # Data Selection EM Objects Identification - * Both EM candidates are required to pass relatively "Loose" EM ID algorithm that uses calorimeter information - * To be included in the dielectron sample both objects should pass track match requirements - * No opposite charge requirement, due to increased charge misidentification in the signal region - * To be included in the diphoton sample at least one object should fail the track match requirements #### Backgrounds - * Physics backgrounds - * Drell-Yan $(\mathbb{Z}/\gamma^* \to ee)$ - * Main irreducible background - * SM γγ production - * "Other SM" background - * $Z/\gamma^* \rightarrow \tau\tau$, $W\gamma$, WW, ZZ, WZ, W+jets, t-tbar - * Studied in Monte Carlo using PYTHIA - * Instrumental Background: Fake objects from QCD events - * Dielectron: Jet + Jet - * Diphoton: γ + Jet and Jet + Jet - * Shape is estimated from data using a sample rich in misidentified EM objects - * Sample is acquired by inverting the calorimeter shower shape requirements #### Full Invariant Mass Range Dielectron - * Having determined the background shapes, normalize the background to data in the low mass region - * For the Z' search: $60 \le M_{ee} \le 150 \text{ GeV}$ - * For the RS search: $60 \le M_{ee} \le 200 \text{ GeV}$ - * Extrapolate normalizations to the full studied spectrum ### Full Invariant Mass Range Diphoton * Having determined the background shapes, normalize the background to data in the low mass region - * For the Z' search: $60 < M_{ee} < 150 \text{ GeV}$ - * For the RS search: $60 \le M_{ee} \le 200 \text{ GeV}$ - * Extrapolate normalizations to the full studied spectrum ### SETTING LIMITS #### Systematic Uncertainties #### Statistically limited analysis #### **Signal** #### Luminosity 6.1% **ID** Efficiency 3% per object Signal Acceptance 0.4% - 7.6% Uncertainty due to PDFs Signal Cross Section 3.4% - 17% Uncertainty due to PDFs EM Energy Resolution 6% Trigger Efficiency 0.1% #### **Background** | ID Efficiency | 3% per object | | | |---------------------------------------|---|--|--| | DY ee NNLO mass
dependent k-factor | 5% | | | | QCD γγ NLO shape
mass dependent | ~10% | | | | Background
Normalization | 2% (M _{ee})
10% (M _{YY}) | | | - * In the absence of a significant excess, proceed with setting a limit at the production cross section times branching ratio at 95% CL as a function of a test mass - * Use a Poisson log-likelihood ratio (LLR) test statistics - * In the absence of a significant excess, proceed with setting a limit at the production cross section times branching ratio at 95% CL as a function of a test mass - * Use a Poisson log-likelihood ratio (LLR) test statistics - * Interpret limit to a low mass limit for a variety of Z' models | Model | Z'_{SSM} | Z'_{η} | Z'_{χ} | Z'_{ψ} | $\mathrm{Z'}_{\mathrm{N}}$ | $\mathrm{Z'}_{\mathrm{sq}}$ | Z'_{I} | |------------------|------------|-------------|-------------|-------------|----------------------------|-----------------------------|----------| | Limit Exp. (GeV) | 1024 | 927 | 910 | 898 | 879 | 829 | 795 | | Limit Obs. (GeV) | 1023 | 923 | 903 | 891 | 874 | 822 | 772 | | Model StSm | e = 0.06 | ε = 0.05 | ε = 0.04 | ε = 0.03 | ε = 0.02 | |------------------|----------|----------|----------|----------|----------| | Limit Exp. (GeV) | 471 | 414 | 340 | 227 | - | | Limit Obs. (GeV) | 443 | 417 | 289 | 264 | 180 | - * Couplings for Z' models can be expressed in terms of the U(1)_{Z'} gauge coupling $g_{Z'}$ - * Interpret the 95% CL upper limit on the production $\sigma \times BR(Z' \rightarrow ee)$ on the $(M_{Z'}, g_{Z'})$ plane for the Z'_{χ} model. Provides a method of extracting limits for many Z' models. ### Limit Calculation Randall - Sundrum Gravitons - * In the absence of a significant excess, proceed with setting a limit at the production cross section times branching ratio at 95% CL as a function of a test mass - * Use a Poisson log-likelihood ratio (LLR) test statistics - Interpret limit to a low mass limit for a variety of k/M_{Pl} values Combine ee and γγ channels #### Limit Calculation Randall - Sundrum Gravitons PRL 104, 241802 (2010) Splitting diEM events into ee and $\gamma\gamma$ spectra and tuning the analysis accordingly, provides an improvement of 1.5 - 2 over the increase of integrated luminosity - * For $k/M_{Pl} = 0.1$, $M_1 < 1040$ GeV region is excluded at 95% CL - * For k/M_{Pl} = 0.01, regions $M_1 \le 440$ GeV and $460 \le M_1 \le 560$ GeV are excluded at 95% CL ### Limit Calculation Randall - Sundrum Gravitons - * For $k/M_{Pl} = 0.1$, $M_1 < 1040$ GeV region is excluded at 95% CL - * For k/M_{Pl} = 0.01, regions $M_1 \le 440$ GeV and $460 \le M_1 \le 560$ GeV are excluded at 95% CL #### **Summary and Conclusions** - * Searches for a heavy narrow resonance decaying to ee and/or γγ channels, have been performed using 5.4 fb⁻¹ of data collected with the DØ detector at the Fermilab Tevatron Collider - * No evidence of a heavy narrow resonance is observed - * Set upper limits on the production cross section time the branching ratio at 95% CL - * Limits are interpreted in the frame of Z' bosons and RS gravitons - * Existence of SSM Z' with M < 1023 GeV is excluded at 95% CL - * PLB 695, 88 (2011) - * RS Graviton with M < 1040 GeV is excluded at 95%CL for coupling of 0.1 - * PRL 104, 241802 (2010) - * Even-though analysis may be updated with the full data-sample - * LHC experiments have already explored new territory at high mass - * LHC at 14 TeV center-of-mass is expected to search for a Z' up to 5 TeV (higher for a RS Graviton) #### Calorimeter Saturation Effects ### Reconstructed di-EM invariant mass distributions for various signal samples